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ABSTRACT 

Let R be a semiprime algebra over a field K acted on by a finite-dimensional 

Lie superalgebra L. The purpose of this paper  is to prove a series of going- 

up results showing how the s t ructure  of the subMgebra of invariants R L is 

related to tha t  of R. Combining several of our main results we have: 

THEOREM: Let R be a semiprime K-algebra acted on by a finite- 

dimensional nilpotent Lie superalgebra L such that i[ characteristic K : p 

then L is restricted and i[ characteristic K : 0 then L acts on R as alge- 

braJc derivations and algebraic superderivations. 

(i) If  R L is right Noetherian, then R is a Noetherlan right RL-module. 

In particular, R is right Noetherian and is a finitely generated right 

R L-module. 

(ii) H R L is right Artinian, then R is an Artinian right RL-module. 

In particular, R is right Artinian and is a finitely generated right 

R L-module, 
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We 

of the  

(iii) H R L is f ini te-dimensional over K then R is also f ini te-dimensional 

over K .  

(iv) I f  R L has f inite Goldie dimension as a right RL-module ,  then R has 

finite Goldie dimension as a right R-module .  

(v) I f  R L has Krut l  dimension ~ as a right RL-module ,  then R has Krul l  

dimension t~ as a right RL-module .  Thus  R has Krul l  dimension at  

most  a as a right R-module .  

(vi) I f  R is pr ime and R L is central, then R satisfies a polynomial  iden- 

tity. 

(vii) l f  L is a Lie algebra and R L is central, then R satisfies a polynomlal 

identity. 

also provide counterexamples to many questions which arise in view 
results in this paper. 

1. I n t r o d u c t i o n  

Let R be a semiprime algebra over a field K acted on by a finite-dimensional 

Lie superalgebra L. The purpose of this paper is to prove a series of going-up 

results showing how the structure of the subalgebra of invariants R L is related 

to that of R. All of our Lie superalgebras will be nilpotent and spanned by 

derivations and superderivations which are algebraic over K, when viewed as K- 

linear transformations of R. Before introducing the definitions and terminology 

that will be use throughout this paper, we begin with an example which will 

put our results into the proper perspective. The example is based on one by 

Bergman-Kharchenko [P, Chapter 6] on group actions. Let S = K [ x ,  y] be the 

noncommutative free algebra over K in 2 variables and let R = $2, the 2 • 2 

matrices over S. Next, let L be the 3-dimensional solvable Lie algebra of in- 

ner derivations of R spanned by the derivations induced by commutation by the 

( 1  0 )  (00 0 )  ( 0  y ) N o t e t h a t a l l t h e  elements el = 0 0 , e2 = , and e3 -- 0 " 

derivations in L are algebraic as K-linear transformations of R and if characteris- 

tic K = p, then L is restricted. The inner derivations induced by e2 and e3 span 

a 2-dimensional abelian ideal I of L and I is also restricted in the characteristic 

p case. The subalgebra of invariants R I under the action of I is the commutative 

subalgebra c~ ~ all matrices ~ the f~ ( 0  ab) '  where a E K and 

b E S .  F u r t h e r m ~ 1 7 6  f~ ( 0  ab ) also commutes with el, 
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then b = 0. Hence the subalgebra of invariants R L is isomorphic to the field 

K.  Clearly R i satisfies many ring theoretic properties such as being Noether- 

inn, Artinian, satisfying a polynomial identity, and being finite-dimensional over 

K,  whereas R has none of these properties. In addition, no proper ideal of R 

intersects R L nontrivially. Therefore, even if we assume that  R is prime and L is 

solvable of relatively small dimension, we cannot hope to prove going-up results 

for R L and R. 

Let us analyze this example more closely. We say that  a derivation d of a 

K-algebra R is separable if its minimum polynomial is of the form and  n + . . .  

+d, where a i  E K.  The invariants of separable derivations have been studied 

using the techniques of group-graded rings [BC] and many  going-up results hold, 

provided that  R is semiprime. The results on group-graded rings that  we will 

need in this paper  appear  in Proposition 3.1. However, if an algebra with a 

separable derivation is not semiprime, then the going-up results in Proposition 

3.1 do not hold. This occurs in our example where the derivation d induced by 

el acts on R I such that  d satisfies the polynomial d 3 - d and R I has a nilpotent 

ideal of codimension 1. In our example, we can consider R as first being acted on 

by the nilpotent derivations in I and then by the separable derivation d which 

can be thought of as an element of the quotient Lie algebra L / I .  On the other 

hand, now suppose we were given a Lie algebra L which can be decomposed in the 

opposite way. That  is, suppose L contained an ideal I such that  I was spanned 

by separable derivations and the quotient L / I  consisted of nilpotent derivations. 

In Theorem 2.3, we show that  even if there are no additional hypotheses on an 

algebra, various chain conditions can be lifted up from the invariants provided 

the action is by nilpotent derivations. Thus in this case, we could prove going-up 

results from R L to R I. We could then apply Proposition 3.1 to the action of I 

on R to lift the chain conditions from R I to R. Although this is not possible in 

the solvable case, we will show that  it does work in the nilpotent case, even for 

the action of Lie superalgebras. This will lead us to our first main result of this 

paper: 

THEOREM 3.3: Let R be a semiprime K-algebra acted on by a ~nite-dimensional 

nilpotent Lie superalgebra L such that i f  characteristic K = p then L is restricted 

and i f  characteristic K = 0 then L acts on R as algebraic derivations and algebraic 

superderivations. 

(i) I f  R L is right Noetherian, then R is a Noetherian right RL=module. In par- 
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ticular, R is right Noetherian and is a finitely generated right RL-module. 

(ii) I f  R L is right Artinian, then R is an Artinian right RL-module. In partic- 

ular, R is right Artinian and is a finitely generated right RL-module. 

(iii) I f  R L is finite-dimensional over K then R is also finite-dimensional over K.  

(iv) I f  R L has finite Goldie dimension as a right RL-module, then R has finite 

Goldie dimension as a right R-module. 

(v) I f  R L has Krull dimension a as a right RL-module, then R has Krull 

dimension a as a right R L-module. Thus R has Krull dimension at most  

as a right R-module. 

We can put Theorem 3.3 and some of the examples in Section 5 into better 

perspective by looking at their relationship with some previous results. In [G] and 

[GM] semiprime rings R and their invariants R (d) under the actions of algebraic 

derivations d are studied. In [GM] it is shown that R is Goldie if and only if 

R (d) is Goldie, and in [G] it is shown that  R is Artinian if and only if R (d) is 

Artinian. Theorem 3.3 shows that the going-up portion of results similar to those 

in [G] and [GM] can be extended from a single derivation to a finite-dimensional 

nilpotent Lie superalgebra. However, in Section 5, we show that  the going-down 

portion of the results in [G] and [GM] cannot be extended to the action of two 

commuting derivations. In particular, in Example 5.2, we give an example where 

R is simple Artinian and L is a 2-dimensional abelian Lie algebra, yet R L is 

neither Artinian nor Goldie. Theorem 3.3 includes the going-up part of the 

Noetherian analog of the results in [G] and [GM]. However, in Example 5.1, we 

see that  the going-down part does not hold as we provide an example where R 

is prime and left Noetherian, but R (d) is not left Noetherian. In addition, in 

Example 5.4, we show that  the results in Theorem 3.3 on the finite generation of 

R over R L require that R L satisfy some chain condition, even if we assume that  

R is prime and L is spanned by a single derivation. 

If one makes additional assumptions about the structure of R, one can obtain 

results for the actions of more general Lie algebras. For example, it is shown 

in [B2], that  if R has no nilpotent elements and if L is a finite-dimensional 

restricted solvable Lie algebra then R is Goldie if and only if R L is Goldie and R 

satisfies a polynomial identity if and only of R L satisfies a polynomial identity. 

Furthermore, it is shown in [B4], that  if R is a domain then the above results 

hold even without assuming that L is solvable. 

Returning briefly to the Bergman-Kharchenko example, we observe that  the 
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ideal I is an abelian Lie algebra such that the invariants R I are commutative, 

yet R does not satisfy a polynomial identity. Thus, even in the abelian case, the 

property of satisfying a polynomial identity does not lift from the invariants to 

all of R. However, if the invariants are central, we obtain one of the two main 

results of Section 4: 

THEOREM 4.3: Let  R be a pr ime  K-algebra acted on by  a f ini te-dimensional 

ni lpotent  Lie superalgebra L such that  i f  characteristic K = p then L is restr icted 

and i f  characteristic K = 0 then L acts on R as algebraic derivations and algebraic 

superderivations. I f  R L is central, then R satisfies a polynomial  identity.  

In Section 4, we also extend Theorem 4.3 to the semiprime case when L is a Lie 

algebra. Finally, Section 5 contains counterexamples to several questions which 

arise in light of the results in Sections 2, 3, and 4. 

We can now introduce the definitions and terminology that  we will use through- 

out this paper. If R is an algebra over a field K,  let Endtc(R) denote the K- 

linear maps from R to R. If a is a K-linear automorphism of R, let Do = 

{6 E Endg(R) :  6(rs)  = 6(r)s  + r6(s)  and 6a(r)  = a6(r) ,  for all r, s E R} and 

O1 = {6 E EndK(R): 6(rs)  = 6(r)s  + a(r )6(s )  and 6a(r)  = - a 6 ( r ) ,  for all 

r, s E R}. If a 2 = 1 and characteristic K r 2, then Do �9 D1 is a Lie superalgebra 

and the elements of Do and D1 are respectively, derivations and superderivations 

of R. The superbracket on Do �9 D1 is defined as [61,62] = 6162 - (-1)ij6261, 

where 61 E Di, 62 E Dj a n d i ,  j E {0,1}. I f L  = L o l L 1  is aL ie supe ra lge -  

bra, we say that  L acts on R if there is a homomorphism of Lie superalgebras 

r L ~ Do �9 D1, where r  C_ Di, for i = 0, 1. When there is no confusion, we 

may simply assume that  L C_ Do @ D1. In particular, we will often identify the 

elements of L0 and L1 with their images under r and refer to them as derivations 

and superderivations. All of our Lie superalgebras will be assumed to be finite- 

dimensional over K.  However, to study the relationship between R L and R, we 

will need the additional assumption that  the derivations and superderivations 

from L0 and L1 are algebraic over K when viewed as elements of Endg(R) .  In 

the characteristic p case, this is equivalent to assuming that  L is restricted and 

that  r also satisfies r  = ~b(/)p, where ~v] is the pth power map and l E L0. 

Note that  when L1 r 0, we must assume that the characteristic of K is not 

equal to 2. Additional properties of restricted Lie superalgebras can be found 

in [B3]. In the characteristic 0 case, we will need to explicitly state that  L acts 
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as algebraic derivations and superderivations. There is an interesting difference 

between derivations and superderivations in the characteristic 0 case. If R is 

semiprime of characteristic 0, then all algebraic derivations of R become inner 

when extended to the Martindale quotient ring of R. However, this is not the 

case for superderivations, thus the study of the invariants of superderivations 

cannot be reduced down to the study of centralizers of subalgebras. 

Another way to view the condition that  the derivations from L0 and L1 are 

algebraic is that r induces an associative homomorphism from the universal 

enveloping algebra U(L) to Endg(R)  and its image is finite-dimensional if and 

only if the derivations and superderivations from L0 and L1 are algebraic. The 

enveloping algebra U(L) is not a Hopf algebra when L is not a Lie algebra. 

However, in this case we can view the automorphism a as also acting on U(L) by 

acting as the identity on L0 and by negating the elements of L1. Letting G be 

the group {1, a}, we can form the skew group ring H = U(L) �9 G and H is now 

a Hopf algebra acting R. This Hopf algebra and the smash product R # H  will 

be used in Section 4 to extend the results in [BCF] on central rings of invariants 

and polynomial identities. For more details on the construction of H,  we refer 

to [B3] and for more details on R # H  and how R is a left R#H-module ,  we refer 

to [BCF]. In the restricted case, we can replace U(L) and U ( L ) ,  G by u(L) and 

u(L) * G, where u(L) is the restricted enveloping algebra of L. In Sections 3 and 

4, we will use the fact that both u(L) and u(L) * G are finite-dimensional. All 

of the results on Lie superalgebras can be specialized to the Lie algebra case by 

ignoring the presence of G and a and viewing r as a Lie homomorphism from L 

to the K-linear derivations of R. In addition, when L is a Lie algebra, we allow 

the characteristic of K to be 2. 

When L acts on R, we define the subalgebra of invariants R L to be 

{r e R: 5(r) = 0, for all ~ E r  In particular, if~ E EndK(R),  we let R (~) de- 

note the set {r e R: $(r) = 0}. If I is a Lie superideal of L, then the quotient Lie 

superalgebra L / I  acts on the subalgebra R I such that  R L ~- (RI) L/I. Depending 

upon the context, the symbol [ , ] may represent either the superbracket map 

sending L x L to L or the commutator map [a, b] = ab - ba, where a, b belong to 

an associative algebra. Inductively, we let L(1) = L and L(n + 1) = [L(n), L] and 

we say that L is nilpotent if there exists a positive integer N such that L(N)  = O. 

If A is an associative algebra or a Lie algebra we will let Z(A) denote its center. 

Finally, all ideals of associative algebras will be assumed to be two-sided, unless 
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it is explicitly stated otherwise. 

2. Nilpotent derivations, superderivations, and skew derivations 

In this section we discuss the important  special case where all the elements of 

L0 and L1 act as nilpotent derivations and superderivations. We also obtain a 

result on nilpotent skew derivations which may be of independent interest. All 

the arguments used in this section are module-theoretic in nature. Thus the 

results we obtain do not require any hypotheses on the structure of either our 

algebras R or our Lie superalgebras L, other than L being finite-dimensional. Of 

fundamental importance in this section are the following well-known facts about 

modules which we state without proof. 

LEMMA 2.1: Let r U -* V be a homomorphism of right A-modules with kernel 

W,  where A is a K-algebra. 

(i) I f  V and W are Noetherian right A-modules, then so is U. 

(ii) I f  V and W are Artinian right A-modules, then so is U. 

(iii) I f  V and W are finite-dimensional over K,  then dimK U <_ dimK V + 

dimK W. 

(iv) I f  V and W have finite right Goldie dimension over A, then so does U. 

(v) I f  V and W have right Krull dimension, then U has right Krull dimension 

and K dim UA <_ sup(K dim VA, K dim WA). 

If 5 E EndK(R) then 5 is a skew derivation of R if there exists a K-linear 

automorphism T of R such that  5(rs) = 5(r)s+7(r)6(s),  for all r, s E R. Therefore 

if a E R (~), r E R we have 5(ra) = 6(r)a. Hence, 6 is a right R(~)-module map. 

We use this observation to prove the following result on the invariants of nilpotent 

skew derivations: 

PROPOSITION 2.2: Suppose 6 is a nilpotent skew derivation of a K-algebra R 

and let R (~) = {r E R: ~(r) = 0}. 

(i) I f  R (~) is right Noetherian, then R is a Noetherian right R(~)-module. In 

particular, R is right Noetherian and is a finitely generated right R (~)- 

module. 

(ii) I f  R (~) is right Artinian, then R is an Artinian right R(~)-module. In 

particular, R is right Artinian and is a finitely generated right R(~)-module. 

(iii) I f  R (~) is m-dimensional over K then R has dimension at  most  mn, where 

~ ( R )  = O. 
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(iv) f i R  (a) has finite Goldie dimension as a right R(~)-module, then R has finite 

Goldie dimension as a right R(~)-module. 

(v) I f  A is a subring o f  R (~) such that  R (a) has Krull  dimension a as a right 

A-module ,  then R has Krull  dimension a as a right A-module .  

Proof." I f6 '~ (R) - -  0, let Ri -- {r E R :6 i ( r )  = 0} fo r i_<  n. Then R = R~, 

R (a) = R1, and we have the sequence of right R($)-modules 

R = Rn -'* Rn-1  ----* " "  ~ R2 ----* R1 -~ R (8). 

For 2 < i < n, we have 8(Ri)  C_ R i -1  and R (~) is the kernel at every stage of the 

sequence. Most of (i)-(v) follows by applying n -  1 times the corresponding parts 

of Lemma 2.1 to the sequence of R(~)-modules starting with R (a) and finishing 

with R. There are a few remaining details needed to complete the proofs of (i), 

(ii), and (v). For (i), since R is Noetherian as a right R(a)-module, it must be 

finitely generated and R must be a right Noetherian ring. For (ii), R (a) is a right 

Artinian ring with unit, hence is a right Noetherian ring. Thus by applying (i), 

R is finitely generated over the right Artinian ring R (~), hence R is an Artinian 

R(a)-module and must be a right Artinian ring. For (v), repeated use of Lemma 

2.1(v) yields K dim RA <_ K dim R(~. However, since R (a) C_ R,  we have 

K dim RA = K dim R(~. I 

In [Ka, Theorem 11], it is shown that if an associative algebra A contains a Lie 

subset S of nilpotent elements such that S spans a finite-dimensional subspace 

of A, then S is associative-nilpotent. The argument, which is due to Jacobson, 

can be adapted in a straightforward way to handle the case where S is no longer 

a Lie subset of A, but does have the property that for any a, b E S there exists 

a scalar a = a(a,  b) E K such that ab - (~ba E S. 

If L is a Lie superalgebra of nilpotent derivations and superderivations of a 

K-algebra R, we can apply the above to our situation by letting A = EndK(R) 

and S = r U r Thus even if L is not nilpotent, r  U r is an 

associative-nilpotent subset of Endg(R) .  Therefore r  is certainly nilpotent as 

a Lie superalgebra. As a result, in the following theorem we do not need to assume 

that  L is nilpotent, since its image in Endg(R)  is a nilpotent superalgebra. 

THEOREM 2.3: Let R be a K-algebra acted on by a finite-dimensional Lie 

superalgebra L o f  ni lpotent  derivations and superderivations and let R L = {r E 

R: 6(r) = O, for all/5 E r  
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(i) I f R  L is right Noetherian, then R is a Noetherian right RL-module.  In par- 

ticular, R is right Noetherian and is a finitely generated right R i -module .  

(ii) I f  R L is right Artinian, then R is an Artinian right RL-module. In partic- 

ular, R is right Artinian and is a finitely generated right RL-module. 

(iii) I f  R r is finite-dimensional over K then R is also finite dimensional over K .  

(iv) I f  R L has finite Goldie dimension as a right RL-module,  then R has finite 

Goldie dimension as a right R-module. 

(v) I f  A is a subring of  R L such that R L has Krull dimension a as a right 

A-module, then R has Krull dimension a as a right A-module. 

Proof'. We proceed by induction on dimK L. If dimK L = 1, then we are done by 

Proposition 2.2. We may now assume that the result is true for all superalgebras 

whose dimension is less than dimK L. We can consider r  to be acting on 

R, thus if r is not injective then dimK r  < dimK L and we are done by the 

induction hypothesis. Therefore we may assume that L and r  are isomorphic. 

However, by the argument above, r  is nilpotent, thus we may assume that  L 

is nilpotent. 

Since L is nitpotent with dimK(L)  > 1, L contains a proper superideal I ~ 0. 

The quotient superalgebra L / I  acts on R I with R L = (RZ) L/r. Since dimK I < 

dimK(L) and dimK L / I  ~ dimK(L), we will make frequent use of the induction 

hypothesis. 

For (i), R I is a Noetherian right RL-module finitely generated by a set 

{ a l , . . . ,  as} and R is a Noetherian module over the right Noetherian ring R I, 

generated over R I by a set {b l , . . . ,  bt}. Therefore R is generated over the right 

Noetherian ring R L by the finite set (biaj}i<t, j<~. Hence R is a Noetherian 

right RL-module and so, R must be a right Noetherian ring. For (ii), since R L 

is a right Artinian ring with unit, it is a right Noetherian ring. Therefore, by (i), 

R is finitely generated over R L. However, a finitely generated module over an 

Artinian ring is Artinian, thus R is an Artinian right RL-module and is therefore 

certainly a right Artinian ring. For (iii), the finite-dimensionality of R L over 

K along with the induction hypothesis immediately implies that  R I is finite- 

dimensional over K. The same argument applied to I acting on R shows that  R 

is also finite-dimensional over K.  Part  (iv) follows easily by using the induction 

hypothesis to go up from R L to R I and then from R I to R. 

Since L is nilpotent, the superideal I can be chosen such that  I is one- 

dimensional, is spanned by a homogeneous element 6, and [I, L] ~ 0. For (v), we 
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first apply the induction hypothesis to obtain K dim RIA = K d imRLA.  Next, 

we can use Proposition 2.2(v) to conclude that K d imRA = K d i m R I A .  As a 

result, it follows that  K dim RA = K dim RLA . | 

We conclude this section with an observation which will be used in Sections 3 

and 4. If 6 is a nilpotent skew derivation of R and if T ~ 0 is a &stable subspace 

of R, then T N R (~) r 0. By applying induction to dimK L, as in the proof of 

Theorem 2.3, it follows that 

PROPOSITION 2.4: Let R be a K-algebra acted on by a finite-dimensional Lie 

superMgebra L of nilpotent derivations and superderivations and let T r 0 be 

an L-stable subspace of R. Then T r R L r O. 

3. T h e  ge ne ra l  case  

In order to prove the main result of this section, we need to combine the results 

of the previous section with some known results on group-graded rings having 

finite support. Most of the facts we need on group-graded rings appear in [CR] 

and can be summarized as 

PROPOSITION 3.1 : Let S be a semiprime algebra graded by a group G with finite 

support and let $1 denote the identity component. 

(i) I f  $1 is right Noetherian, then S is a Noetherian right Sl-module. In 

particular, S is right Noetherian and is a finitely generated right Sl-module. 

(ii) I f  $1 is right Artinian, then S is an Artinian right Sl-module. In particular, 

S is right Artinian and is a finitely generated right Sl-module. 

(iii) I f  $1 has finite Goldie dimension as a right Sl-module, then S has finite 

Goldie dimension as a right Sl-module. 

(iv) I f  A is a subring of SI such that S1 has Krull dimension a as a right 

A-module, then S has Krull dimension a as a right A-module. 

Proo~ By [CR, Proposition 1.2], $1 is semiprime. Then part (i) follows from 

[CR, Corollary 1.8] and part (ii) follows from [CR, Theorem 1.4]. Part  (iii) follows 

from [CR, Proposition 1.5]. For part (iv), since $1 is semiprime and has Krull 

dimension at most a as a right Sl-module, it follows that $1 is right Goldie. 

Then, by [CR, Theorem 1.7], S is contained as a right Sl-module in a finite 

direct sum of copies of $1. Therefore, S and $1 have the same Krull dimension 

as right A-modules. | 
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In order to apply the results on group-graded rings, we will need to extend 

the ground field K. Suppose A C B are K-algebras and let K ~ be a finite- 

dimensional field extension of K.  If A is Noetherian, Artinian, of finite Goldie 

dimension, or of Krull dimension a as a right A-module, then the same holds for 

A | K ~ as a right A | K~-module [MR, Chapter 10]. Similarly, if B |  K '  

is finitely generated, of finite Goldie rank, or of Krull dimension at most a as 

a right A |  K~-module, then the same holds for B as a right A-module. As 

a result, to prove various results on the structure of B as a right A-module we 

may, if needed, extend the ground field K. 

For the remainder of this section, we will assume that  L is nilpotent. We 

now prove a technical lemma which shows how the nilpotence of L allows us to 

combine the results from Theorem 2.3 with those from Proposition 3.1. 

LEMMA 3.2: Let L be a finite-dimensional nilpotent Lie superalgebra acting on 

a K-algebra R such that if characteristic K = p then L is restricted and if 

characteristic K = 0 then L acts on R as algebraic derivations and algebraic 

superderivations. Then there exists a finite-dimensional separable field extension 

K ~ D_ K such that L' = L | K '  acts on R' = R | K I and R' contains an 

L~-stable subalgebra B such that 

(i) (R') L' c_ B c_ R'. 

(ii) B is the identity component of R ~ under the grading of R ~ by a group G 

with finite support. 

(iii) The restriction of the action of L' to B is as nilpotent derivations and 

superderivations. 

(iv) I f  R is semiprime then R ~ is semiprime. 

Proof: We must consider the characteristic p and characteristic 0 cases sepa- 

rately. If L is restricted in characteristic p, for any n > 0, let Z(n) denote the K- 

linear span of the set {ziP']: z E L0 and [z, L] = 0}. By the finite-dimensionality 

of Lo, there exists an N _> 0 such that Z(N) = Z(N+I). Letting I = Z(N), we 

observe that  I is an abelian restricted ideal of L contained in Lo. Furthermore, 

by the choice of N, if {Z l , . . . ,  zs} is a basis of I,  then {zl[V],..., z8 Iv]} is also a 

basis of I.  Therefore by Hochschild's theorem on the semisimplicity of restricted 

enveloping algebras [H], the restricted enveloping algebra u(I)  is semisimple. 

In [BC] the actions of commutative semisimple Hopf algebras are studied. It 

is shown that  if H is a finite-dimensional commutative semisimple Hopf algebra 
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acting on a K-algebra  R, then there exists a finite-dimensional separable field 

extension K '  of K such that  H t~ g K t = (KrG) *, the dual of a group algebra of 

a finite group G, and R ~ g  K '  is graded by G with identity component R H |  K ' .  

Let R'  = R | K ' ,  L '  = L ~ g  K ' ,  and I '  = I |  K ' .  The K-linear action 

of L on R extends to a Kt-linear action of L ~ on R r with (RI) L' : R L | K ' .  

By the construction of I ,  the restriction of the derivations and superderivations 

of L to R i are nilpotent K-linear transformations, hence the derivations and 

superderivations of L ~ are nilpotent K'- l inear  transformations when restricted to 

R I |  K q  We now have the following chain of K'-algebras,  (RI) L' C_ R I |  K '  C_ 

R '  where R I ~ K  K '  is the identity component of R'  under the grading of a finite 

group and the action of L I restricted to R I | K '  is as nilpotent derivations and 

superderivations. Finally, it is shown in [BC, Lemma 3], that  if K '  is separable 

over K and if R is semiprime, then R'  is also semiprime. 

In the characteristic 0 case, we again want to find a finite-dimensional field 

extension K '  D K which allows us to decompose R'  = R |  K '  as we did in 

characteristic p. Since L = L0 @ L1 is a nilpotent Lie superalgebra, Lo is certainly 

a nilpotent Lie algebra. Now let A = {r E R: dn(r) = 0, for all d E Lo where 

n = n( r ,d)  > 1}; since Lo is nilpotent, it follows from [B1, Lemma 1.6] that  

A is an L0-stable K-subalgebra of R on which Lo acts as nilpotent derivations. 

However, the argument used in the proof of [B1, Lemma 1.6] can be easily adapted 

to show that  A is also L-stable where L acts on A as nilpotent derivations and 

superderivations. 

If {Xl , . . . ,  xs} is a K-basis  of Lo, let K ~ be a finite-dimensional field extension 

of K which contains the eigenvalues of the action of each xi on R. Then, since Lo 

is nilpotent, R'  = R |  K ~ is graded with finite support  by the set G of K'- l inear  

maps from L0 | K '  to K t. We note that  the identity component of R ~ under 

this grading is the set B = {r �9 R~: d'~(r) = 0, for all d �9 L0 |  K '  where 

n = n(r, d) _> i}. L ~ acts on B as nilpotent derivations and superderivations 

and, since L0 is nilpotent, B is equal to the set A |  K ~. 

Therefore we have a chain of K~-algebras R L ~ g  K ~ = (Rt) L' C_ B C_ R I as in 

the char~.cteristic p case. Furthermore, since all extensions in characteristic 0 are 

separable, then R ~ is semiprime if R is. | 

We are now in a position to prove the main result of this section. 

THEOREM 3.3: Let  R be a semiprime K-algebra acted on by a finite-dimensional 
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nilpotent  Lie superalgebra L such that  i f  characteristic K = p then L is restricted 

and i f  characteristic K = 0 then L acts on R as algebraic derivations and algebraic 

superderivations.  

(i) I f  R L is right Noetherian,  then R is a Noether ian right RL-module .  In par- 

ticular, R is right Noetherian and is a f ini tely generated right RL-module .  

(ii) I f  R L is right Art inian,  then R is an Art in ian right RL-module .  In partic- 

ular, R is right Ar t in ian  and is a f ini tely generated right RL-module .  

(iii) I f  R L is f ini te-dimensional over K then R is also f ini te-dimensional over K .  

(iv) I f  R L has finite Goldie dimension as a right RL-module ,  then R has finite 

Goldie dimension as a right R-module .  

(v) I f  R L has Krul l  dimension a as a right RL-module ,  then R has Kru11 

dimension a as a right RL-module .  Thus  R has Krul l  dimension at mos t  a 

as a right R-module .  

Proof." Let K '  be a separable extension of K as in Lemma 3.2; therefore we 

have the chain R L |  K '  = (RI) L' C_ B C_ R ~ = R |  K ' .  If R L is Noetherian or 

Artinian as a right RL-module, then so is (R' )  L' as a right (R')L'-module. Since 

the action of L ~ on B is as nilpotent derivations and nilpotent superderivations, 

then by Theorem 2.3 (i) and (ii), B is finitely generated as a right (R ' )L ' -module .  

However, by Proposition 3.1 (i) and (ii), R' is finitely generated as a right B- 

module, thus R ~ is a finitely generated right (R')L'-module. As a result, R 

is finitely generated as a right RL-module. Parts (i) and (ii) now follow as 

finitely generated modules over Noetherian or Artinian rings are Noetherian or 

Artinian. For part (iii), if R L is finite-dimensional over K then it is a right 

Artinian ring. Hence R is finitely generated over R L and therefore must also be 

finite-dimensional over K. 

If R L has finite Goldie dimension as a right RL-module then the same holds 

for (R~) L' as a right (Rt)L'-module and therefore, by Theorem 2.3 (iv), the same 

also holds for B as a right B-module. Thus, by Proposition 3.1 (iii), R ~ has 

finite Goldie dimension as a right R~-module and therefore the same is true for 

R as a right R-module, thereby proving part (iv). (R~) L' is a finite direct sum of 

copies of R L as a right RL-module, thus if R L has Krull dimension a as a right 

RL-module then so does (R~) L'. By Theorem 2.3(v), B also has Krull dimension 

a as a right RL-module. Thus, by Proposition 3.1(iv), R' has Krull dimension a 

as a right RL-module. Since R L C_ R C_ R' ,  it is clear that  R has Krull dimension 

a as a right RL-module and has Krull dimension at most a as a right R-module. 
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We conclude this section by extending [B1, Theorem 1.8] on the existence of 

invariants of the action of Lie algebras to Lie superalgebras. 

THEOREM 3.4: Let R be a K-algebra acted on by a finite-dimensional nilpo- 

tent Lie superalgebra L such that i f  characteristic K = p then L is restricted 

and i f  characteristic K = 0 then L acts on R as algebraic derivations and al- 

gebraic superderivations. I f  A is a non-nilpotent L-stable subalgebra of  R then 

A A R L ~ O .  

Proof: As in Lemma 3.2, we extend the ground field and let R p = R QK KI, 
L ~ = L | K ~, A t = A | K t, and we also let B be as in Lemma 3.2. Since A is 

L-stable, A t is a graded subspace of the graded algebra R t = R | K t. By [CR, 

Proposition 1.2], since A t is now non-nilpotent and graded, A t n B r 0. Since 

A ~ n B is a non-zero L-stable subspace of B it follows, by Proposition 2.4, that  

A ~ n R ~ ~ 0. However, A ~ N R ~ -- (A n R L) | KI, thereby proving the result. 

I 

4. Central rings of  invariants and polynomial  identities 

In this section we prove some further going-up theorems from R L to R, however 

the techniques used will be somewhat different from those in Sections 2 and 3. 

In [BCF, Theorem 2.8], it is shown that  if R is prime and if L is a nilpotent 

Lie algebra acting on R in a certain "finite" manner where R L is central, then 

R satisfies a polynomial identity. We will extend this result in two ways: (i) for 

prime rings we extend the result from the action of Lie algebras to the action 

of Lie superalgebras and (ii) for the action of Lie algebras we extend the result 

from prime rings to semiprime rings. At this point, we must be more precise as 

to the meaning of L acting on R in a "finite" manner. 

Suppose L is a finite-dimensional Lie superalgebra acting on R such that  if 

characteristic K = p then L is restricted and if characteristic K = 0 then L acts 

on R as algebraic derivations and algebraic superderivations. Then it is clear 

that  the image of the universal enveloping algebra U(L) in E n d g ( R )  is finite- 

dimensional. Furthermore, if L is a Lie superalgebra but not a Lie algebra, then 

there exists a group G of order 2 such that  the skew group ring U(L) �9 G is a 

Hopf algebra which acts on R and the image of U(L) , G  is also finite-dimensional 

in Endg(R) .  To unify the two cases, if L is a Lie algebra then we let H = U(L) 

and if L is a Lie superalgebra with L1 r 0, we let H = U(L) �9 G. Then we 
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say that  H acts f in i te ly  o f  d i m e n s i o n  N if the image of H in E n d g ( R )  has 

dimension N. In the restricted case let u(L)  be the restricted enveloping algebra 

of L; then N is bounded by d img  u(L)  when L is a Lie algebra and N is bounded 

by 2 �9 dimK u(L)  when L is a Lie superalgebra with L1 ~ 0. 

LEMMA 4.1 : Let  R be a semipr ime algebra on which H = U ( L ) or H = U ( L ) �9 G 

acts finitely. I f  A ~ 0 is an H-s table  left ideal o f  R and R L C_ Z ( R ) ,  then 

A n R H  ~ O .  

Proof'. If H = U(L), then R L = R H and the result is a special case of Theorem 

3.4. Therefore, we will assume that  L1 ~ 0 and H = U(L)  �9 G. If 6 C L0 U LI 

and a E R, then either 6(a(a))  = a(6(a))  or E(a(a)) = - a ( 6 ( a ) ) .  Therefore if 

a E R L, then a(a) E R L, hence a acts on R L. By Theorem3.4 ,  A M R  L ~ 0 

and i f 0 ~ b E  A n R  L , t h e n b + a ( b )  C A n R  n.  A s a r e s u l t ,  if cr(b) r - b  then 

A M R H r 0. However, if a(b) -- - b  then a(b 2) = b 2 E A N R H. Since b is central, 

we have b 2 ~ 0, and hence A A R H ~ O. I 

We now handle the important  special case where R H is a field. 

LEMMA 4.2: Let  R be a semipr ime algebra on which H = U(L)  or H = U ( L ) * G  

acts f ini tely o f  dimension N .  I f  R n C_ Z ( R )  and i f  R H is a field, then R satisfies a 

polynomial  ident i ty  o f  degree at mos t  2[x /~  ], where Iv/N] is the greatest  integer 

in 

Proof: When we let the smash product R # H  act on the ring R, the 

R#H-submodu le s  of R are the H-stable left ideals of R. Since all the elements 

of R H are invertible in R, it follows by Lemma 4.1, that  R is an irreducible left 

R#H-modu le .  If H = U(L)  then clearly R H -: R L. On the other hand, if 

H = U(L)  �9 G, we note that  R L is a semiprime ring with fixed ring R H under the 

action of G. Since R H is a field and R L has no IG[-torsion, it follows that  R L is 

finite-dimensional over R H. Thus regardless of whether H = U(L)  or U(L)  * G, 

R L is a right Artinian ring. Therefore, by Theorem 3.3(ii), R is finitely generated 

as a right RL-module, hence R is also finite-dimensional over R H. Thus R has 

finite Goldie rank as a left R-module. As a result, we can apply [BCF, Theorem 

2.2] which says that  if A is a left H-module  algebra such that  A # H  acts irre- 

ducibly on A, A has finite left Goldie rank, and H acts finitely of dimension N, 

then the dimension of A as a left vector space over A g is at most N. 

Therefore R has dimension at most N over the central subfield R H and it 
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follows by basic facts on the polynomial identities of semiprime rings, that  R 

satisfies a standard identity of degree at most 2 [x /~  ]. I 

We can now extend [BCF, Theorem 2.8] to the action of Lie superalgebras. 

The proof below is written for Lie superalgebras, but it can easily be specialized 

to Lie algebras by ignoring the presence of G and the automorphism a. 

THEOREM 4.3: Let  R be a pr ime  K-algebra acted on by a fn i te -d imens ional  

ni lpotent  Lie superalgebra L such that  i f  characteristic K = p then L is restricted 

and i f  characteristic K = 0 then L acts on R as algebraic derivations and algebraic 

superderivations.  I f  R L is central, then R satisfies a polynomial  identity. 

Proo~ The Hopf algebra U(L)  * G acts finitely on R with R H C_ R L C_ Z ( R ) .  

Next we localize R at the nonzero elements of R H to obtain a new prime H-  

module algebra S. If s E S L, then s = r a  -1, where r E R and a E R H. If 6 E 

L0 U L1 then 0 = 6(s) = 6(ra  -1)  = 6(r )a  -1,  hence r C R L and so, S L is central. 

Fhrthermore, if s = r a  -1 C S H then r~  -1 = s = a(s)  = a ( r a  -1)  = a ( r ) a  -1.  

Hence r C R H and thus S H is the quotient field of R H. As a result, we can apply 

Lemma 4.2 to conclude that  S satisfies a polynomial identity and thus R also 

satisfies a polynomial identity. I 

We now assume that  L is a Lie algebra and we will extend the result in [BCF] 

to semiprime rings. The key is to t ry to reduce to the case where R L is a field 

and then apply Lemma 4.2. In order to do this, we need to extend the action 

of L to various other K-algebras. If Q is the symmetric Martindale quotient 

ring of R, then the action of L always extends uniquely to Q. Q is semiprime 

and its center C, known as the extended center of R, is von Neumann regular. 

Fhrthermore, if a derivation of R is algebraic then its extension to Q satisfies the 

same polynomial. Therefore the hypothesis that  L acts finitely of dimension N 

on R also extends to the action of L on Q. For the remainder of this section, we 

will assume that  L is a finite-dimensional nilpotent Lie algebra acting finitely on 

the semiprime ring R with R L C Z ( R ) .  

LEMMA 4.4: QL C_ C. 

P r o o f  Let q E QL and let I be an essential ideal of R such that  Iq, qI  C_ R.  

I t  is clear that  ILq  C_ R L. It  suffices to show that  [I, q] = 0 and, to this end, 

we note that  0 = [I, ILq] = IL[I,q].  Thus if we let J = {r E R: I L r  = 0}, it 

now suffices to show that  J = 0. Since all the derivations of L are algebraic, it 
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follows by [B1, Proposi t ion 1.12] tha t  all nonzero ideals of R contain a nonzero 

L-stable ideal. I f  J r 0, then I N J ~ 0 and therefore I N J contains a nonzero 

L-stable ideal of R. Thus,  by L e m m a  4.1, there exists a nonzero a �9 ( I  N j ) L .  

As a result, a 2 �9 I L J  = O. However, this is a contradict ion as a is central  in a 

semiprime ring. I 

The  center of any ring is invariant under all derivations of the ring. However, 

this need not  be the case for skew derivations. In fact, in Section 5 we will 

see an example of a Lie superalgebra act ing on a semiprime ring whose center 

is not  L-stable. We do not know if the results in this section can be extended 

to the act ion of  Lie superalgebras on semiprime rings. However, the remaining 

arguments  in this section do not apply to the act ion of  Lie superalgebras,  since 

they require tha t  C be L-stable. 

LEMMA 4.5: QL is a v o n  Neumann regular ring. 

Proof." I f a  E QL, we need to  find s o m e b  E QL such that  a2b = a. Since C 

is yon Neumann  regular, we know tha t  there exists some c E C with a2c = a. 

We will use c to construct  an appropr ia te  b E QL. Let e -- ac, then e 2 = 

(ac) 2 = (a2c)c = ac -- e. Thus e is a central  idempotent  in Q and as a result, 

5(e) = 0, for all 5 E L. Therefore 0 -- 5(ac) = ab(c) and mult iplying This 

equation by e yields 0 = aS(c)e = aS(ce). However a = ae E Ce and so, a is 

invertible in Ce. Therefore since 5(ce) E Ce, we have ~(ee) = 0. Fur thermore,  

a2(ee) = (a2c)e = ae = a and thus b = ce is the desired element of QL. I 

Since QL is central, if M is any maximal  ideal of Q5 then we can localize Q 

at M to form the K-a lgebra  QM. Note tha t  the elements of Q which become 

0 in QM are precisely those which are annihilated by some element of QL _ M .  

Clearly, the act ion of  L on Q determines a unique act ion of L on QM- 

LEMMA 4.6: (QL)M = (QM) L. 

Proof'. The inclusion (QL)M C_ (QM) L is clear. For the reverse inclusion, let 

qa -1 C (QM) L. Thus for all ~f E L, 5(qa -1)  = 0 in QM. Therefore if {~fl,. . .  ,/in} 

is a basis for L, then for every i < n there exists m~ E QL _ M such tha t  
n 

miS(q)a -1 = 0 in Q. Let m = 111 mi,  then rn E QL M and for all (~ E L, 

5(mq) = m~f(q) = O. As a result, mq �9 QL and q a - I  = (mq) . (ma)- i  �9 (QL)M" 

I 
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In general, the localization of a semiprime ring at a maximal ideal of a central 

subring need not be semiprime. However, in our specialized situation we have 

LEMMA 4.7: QM is semiprime. 

Proof: Suppose a E QM such that aQ, Ma = 0, it suffices to show that a = 0 

in QM. Then a = qa -1, for some q E Q and a E QL _ M and qQq = 0 in 

QM. If f E Anne(qQq) ,  then ( fq )Q( fq )  = O. Therefore, since Q is semiprime, 

f q  = O, hence Anne(qQq)  = Anne(q).  In addition, Q is a complete C-module 

[Kh, Lemma 1.6.14] and qQq is a closed additive subgroup of Q. Thus by [Kh, 

Lemma 1.6.26], there exists some s E Q such that  Anne(qsq)  = Anne(qQq) .  

Since qsq = 0 in QM, there exists an m E Q L - M  such that mqsq = O. However, 

Anne(qsq)  = Anne(q),  hence mq = O. As a result, q = 0 in QM and so, a = 0 

in QM, thereby proving the result. I 

We can now put the pieces together to prove the main results of this 

section. We state the characteristic p and characteristic 0 cases separately, since 

the conclusion in the characteristic 0 case will be much stronger. 

THEOREM 4.8: Let R be a semiprime K-algebra acted on by a finite-dimensional 

restricted nilpotent Lie algebra L, where K has characteristic p. I f  R L is central, 

then R satisfies a polynomial identity of  degree 2 [ ~  L ]. 

Proof: We extend the action of L to Q and by Lemma 4.4, QL C C. Therefore 

Q embeds in HM QM, where the product is taken over the maximal ideals of QL. 

Since R C_ Q, it suffices to show that each QM satisfies the standard identity of 

degree 2[~/p dimK L ]. If M is any maximal ideal of QL, then L acts on QM. By 

Lemmas 4.4 and 4.5, QL is a yon Neumann regular ring contained in C, therefore 

[P, Lemma 18.1(i)] (Q,L)M is a central subfield of QM- However by Lemma 4.6, 

(QL)M = (QM) L, thus (Q.M) L is now a central subfield of QM. By Lemma 4.7, 

QM is semiprime and we are therefore in a position to apply the special case 

of Lemma 4.2, where H = U(L) and [G[ = 1. As a result, QM satisfies the 

standard identity of degree 2[v/N ], where N = dimg u(L) = pdimK L. Thus R 

also satisfies the standard identity of degree 2 [ ~  n ]. I 

All algebraic derivations of a semiprime ring R of characteristic 0 become inner 

when extended to Q. As a result, studying the invariants of algebraic derivations 

of semiprime rings in characteristic 0 reduces to studying centralizers of certain 

subsets of Q. Thus we can now prove 
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THEOREM 4.9: Let R be a semiprime K-algebra with characteristic K = 0 and 

let L be a finite-dimensional nilpotent Lie algebra which acts on R as algebraic 

derivations. I[ R L is central then R is commutative and the action of L on R is 

trivial. 

Proo~ Since all derivations of L become inner in Q, it suffices to show that  Q 

is commutative. Following the argument used in the proof of Theorem 4.8, QM 

satisfies a polynomial identity, for every maximal ideal M __C_ QL. Therefore it now 

suffices to show that  QM is commutative. QM is a semiprime ring satisfying a 

polynomial identity whose center is a field. Therefore, as in the proof of Theorem 

4.8, QM is a central simple algebra. Tensoring by the algebraic closure of K, we 

may assume that  Q,M ~- Kt, the t x t matrices over K. Without loss, we may 

identify L with its image in EndK(QM). Therefore, by Lemmas 4.4 and 4.6, 

it will be enough to show that L = 0. If L ~ 0 then, since L is nilpotent, it 

follows that Z(L) ~ O. In this case, let 0 ~ 5 E Z(L) and suppose the derivation 

5 is induced by a E QM. If d E L, then d is induced by some b E Q M  and 

[5, d] = 0 in L. Since the derivation [5, d] is induced by [a, b] E QM, we have that 

[a, b] E Z(QM). F~rthermore, since K has characteristic 0, no nonzero central 

elements of Kt can have trace equal to 0. However, [a, b] is a commutator in 

QM, hence it has trace 0 and so, [a, b] = 0. As a result a commutes with all the 

elements of QM which induce derivations from L, hence a E (QM) L C_ Z(QM). 

Thus 5 = 0 in EndK(QM), a contradiction. Therefore the action of L on QM is 

trivial, hence QM is commutative and the proof is complete. I 

In light of Theorem 4.9, it is reasonable to wonder if the conclusion of Theorem 

4.8 can be strengthened to R being commutative. Similarly, it is reasonable to 

wonder in the characteristic 0 case, if the conclusion of Theorem 4.3 can be 

strengthened to R being commutative. However, in the next section we will see 

examples showing that  the conclusions of these theorems cannot be strengthened 

to commutativity. In fact, we will see that the bound on the degree of the 

polynomial identity in Theorem 4.8 is best possible. 

5. Counterexamples 

In this section we provide counterexamples to various questions which arise in 

view of the results in Sections 2, 3, and 4. Let d be an algebraic derivation of a 

semiprime ring R. In [GM] it is shown that  if R is left Goldie then R (d) is left 
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Goldie, and in [G] it is shown that  if R is left Artinian then R (d) is left Artinian. 

In the next example, we show that the analogous result does not hold for left 

Noetherian rings. 

Recall that  when d is a skew derivation, d is a right R(d)-module map, but not 

necessarily a left R(d)-module map. As a result, all of the theorems in Sections 2 

and 3 are stated for right R(d)-modules. If R (d) is well behaved under the action 

of the automorphism T which corresponds to d, then similar results also hold on 

the left. In particular, if d is a derivation, then T = 1 and d is both a left and 

right R(d)-module map. Therefore, if L is a Lie algebra, the results in Sections 

2 and 3 are equally valid for left RL-modules. For convenience, the examples 

in this section will sometimes be stated in terms of left RL-modules. However, 

when L is a Lie algebra, these examples could easily be reworked in terms of 

right RL-modules. 

Example  5.1: A prime left Noetherian ring R of arbitrary characteristic with a 

nilpotent derivation ~ such that  R (~) is not left Noetherian. 

Let A = K(t0, t l , . . . )  be the rational functions over the ground field K and 

let T be the injective homomorphism of A such that "l '(ti)  = t i + l ,  for all i > 0. 

Now let B be the skew polynomial ring A[x; ~-] where xa = T ( a ) x ,  for all a E A, 

and every element of B is of the form ~ aix i, ai E A. Next, let R = B2, the 

2 x 2 matrices over B. Since B is a left Noetherian domain, R is a prime left 

Noetherian ring. Let 5 be the inner derivation of R defined as commutation by 

( 0  O ) C l e a r l y 5 3 = O a n d i f (  a ~ )  ER(~)ad i r ec t ca l cu l a t i~  the element 0 " c 

shows that  ax = xd and c = 0. Thus i f a  = ~ aix ~ and d = ~ dlx i, where 

ai,d~ �9 A, it follows that  ~ ] a i x  ~+1 = ax = xd = x ~ & x  i = ~ r ( d i ) x  i+1. 

As a result, after extending T to all of B by mapping x to itself, we have a = 

T(d) �9 T(B)  = k ( t l , t2 , . . . ) [X;T] .  Next, for every natural number i, let Vi = 

T(B) + T(B)to + ".. + T(B)to i. Each V~ is a left v(B)-submodule of B and 

(00) (:) V/ ~ V/_l_ 1 as t0 i+1 �9 Vi+l - Vi. Now let T~ = Vi a 0 ; since c �9 R(~) 

implies tb.at a E T(B) ,  it follows that each Ti is a left ideal of R (~). Since 

T1 C T2 C T3 C . . .  is an infinite ascending chain of left ideals of R (~), R (~) is not 

left Noetherian. It is also interesting to note that R = R(~)e21 + R(~)e22, hence 

R is a finitely generated left R(~)-module. | 

In light of Example 5.1, it would be interesting to know if R (~) must be left 
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Noetherian when R is prime and both left and right Noetherian. The results 

of [GM] and [G] mentioned above can be viewed as going-down results for the 

action of 1-dimensional Lie algebras. However, in the next example we show that 

these results cannot be extended even to 2-dimensional abelian Lie algebras. 

Example  5.2: A simple Artinian ring R of arbitrary characteristic acted on by 

a 2-dimensional abelian Lie algebra L of nilpotent derivations such that  R L does 

not have finite left Goldie rank as a left RL-module. In particular, R L is neither 

left Artinian nor left Goldie. 

Let D be any division ring containing an element x, such that D has infinite 

dimension as a left vector space over A, the centralizer of x in D. Let {al, a2, . .  �9 } 

be elements of D which are left independent over A, hence Aal  (9 Aa2 @ . . .  is 

an infinite direct sum of left A-submodules of D. Now let R = D2, the 2 • 2 

matrices over D, hence R is a simple Artinian ring. Next, let 61 and 62 be the 

inner derivations of R induced by (00 X)o and (00 10). Clearly61 and62span  

a 2-dimensional abelian Lie algebra L of derivations such that  613 = 623 = O. 

As in the previous example, if d E R L, then ax  = xd, a = d, and c = 0. 

( 0  A a ' ) , t h e n e a c h T i  Hence, a is an element of A. For every i _> 1, let Ti = 0 0 

is a left ideal of R L. As a result, 7"1 �9 T2 G " " ,  is an infinite direct sum of left 

ideals of R L. Thus R L has infinite Goldie rank as a left RL-module and so, R L 

is neither left Artinian nor left Goldie. II 

In the Bergman-Kharchenko example mentioned in Section 1, R is a matrix 

ring over a noncommutative free algebra. It is reasonable to wonder if similar 

examples hold for rings satisfying various chain conditions. In the next example, 

we modify the Bergman-Kharchenko example so that R is a matrix ring over a 

left Ore domain. 

Example  5.3: A prime left Goldie ring R of arbitrary characteristic acted on 

finitely by a solvable 3-dimensional Lie algebra L such that R contains an L- 

stable ideal I ~ 0 with I n R L = O. 

We slightly modify the ring used in Example 5.1 as we let A = K[to, t l , . . . ]  

be the commutative polynomial ring over the ground field K and let r be the 

injective homomorphism of A such that  r( t l )  = ti+l, for all i _> 0. Now let 

B be the skew polynomial ring A[x; r] where xa  = r (a)x ,  for all a E A, and 
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(~ 0) 
example, L is a solvable 

p, L is restricted and in 

I be the ideal R [ x  0 
\ 0 x 

then, we have ax  = xd, 

every element of B is of the form ~ a i x  i, ai 6 A.  Next, let R = B2, the 

2 • 2 matrices over B. Since B is a left Ore domain, R is a prime left Goldie 

ring. Let L be spanned by the three inner derivations of R induced by f l  = 

( 1  0 )  As in theBergman-Kharchenko  , and f3 = 0 0 " 

3-dimensional Lie algebra such that in characteristic 

characteristic 0, L acts as algebraic derivations. Let 

)" if ( a '  c ~ )  6 I c o m m u t e s w i t h b o t h  f l  and f2, 

ato = rod, and c = 0. Since ax = x d i t  follows, as 

in Example 5.1, that if a = ~'~aix i and d = ~ d l x  i, with ai ,di  E A,  then 

~-]~aix i+1 = ax = xd  = x~-~dix  i = ~ T ( d i ) x  i+1. Thus a = ~ T ( d l ) x  i. Since 

ato = tod, we also have ~-]~tir(d~)x i = ~-'~T(di)xito = ato = tod = ~'~tod~x i. 

Thus for all i > 1, t i T ( d i )  = todi. However this is impossible, unless d~ = 0, since 

the largest subscript of the t's in t~-(di) exceeds the largest subscript appearing 

intod~. A s a r e s u l t ,  a = d = c = O .  Finally, i f ( O  0 ~ )  6 I a l s o c o m m u t e s w i t h  

f3, then b = 0. Hence I N R L -= O. | 

The results in Section 3 on the finite generation of R as a RL-module all assume 

that R L satisfies a chain condition. In the next example, we show that  if there 

are no hypotheses on R L, then R need not be finitely generated over R n even if 

R is prime and L is 1-dimensional. 

Example  5.4: A prime ring R of arbitrary characteristic with a nilpotent 

derivation 6 such that R is not finitely generated as a left R(~)-module. 

Let A = K[x ,  y] be the free algebra in 2 noncommuting variables over the field 

K and let R be the prime ring A2, the 2 • 2 matrices over A. Let 6 be the inner 

( 0  0 ) A s b e f ~  ~ )  6 R ( ~ ) t h e n  derivation induced by 0 " 

ax = xd  and c = 0. Letting B = K[x ,  y ] x + K  it follows that d 6 B. B is a subring 

of A and A is not finitely generated as a left B-module, for if {dl, d2 , . . . ,  dn} C A 

then Bd~ + Bd2 + . . .  + Bdn  can only contain a finite number of y~. Now suppose 

rl = 6 R,  for i < n. Then if 6 R(~)rl + R(~)r2+ �9 �9 -+R(~)rn, it 
cl di 

follows that h E Bdz  + Bd2+.  . .+ Bdn.  However, since B d l  + Bd2+.  . .+ Bdn  # A,  

R is not finitely generated as a left R(~)-module. | 

If R is a simple ring of characteristic 0 satisfying a polynomial identity, then all 

central commutators must be zero. This fact was crucial in the proof of Theorem 
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4.9, where we showed that R must be commutative�9 However, in the characteristic 

p case a simple ring satisfying a polynomial identity can have elements a, b such 

that ab - ba = 1. We use this fact to now show that Theorem 4.9 cannot be 

extended to the characteristic p case. 

Example  5.5: A simple ring R of characteristic p acted on by a 2-dimensional 

restricted abelian Lie algebra L of nilpotent derivations such that R L is central, 

but R is not commutative. 

Let K be a field of characteristic p and let R be the simple ring Kp, the p • p 

matrices over K. Next let 

a 

0 1 0 0 
0 0 1 0 
: : " . .  : 

0 0 0 0 
0 0 0 0 

and 

b = 

( 00 
0 0 . . .  0 
2 0 . . .  0 , 

0 0 . . .  p - 1  

and we let L be the Lie algebra spanned by the inner derivations induced by a 

and b. It is easily checked that ab - ba = 1,a p = 0, and b y = 0, therefore L is a 

2-dimensional restricted abelian Lie algebra consisting of derivations all of whose 

pth power is 0. If T is the subalgebra of R generated by a and b, we claim that 

T = R. To this end, we first note that a p-1 and by-1 are nonzero scalar multiples 

of the matrix units elp and epl. Thus ell E T. In addition, b i - l e n  and ell aj-1 

are nonzero scalar multiples of e~l and eli ,  for 2 ~_ i , j  < p. As a result, T clearly 

contains all the matrix units of R and so, T = R. However, R L is the centralizer 

in R of T, hence R L is central even though R is not commutative�9 | 

Not only does Example 5.5 show that  R need not be commutative, but we can 

now adapt Example 5.5 to show that the bound on the degree of the polynomial 

identity in Theorem 4.8 is best possible. 

Example  5.6: A simple ring S of characteristic p acted on by a 2n-dimensional 

restricted abelian Lie algebra L of nilpotent derivations such that S L is central, 
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but the smallest degree of a polynomial identity satisfied by S is 2 [ ~  ] = 
2 p  n . 

Let R, a, and b be as in the previous example. For any n _> 1, let S = 

R | R | �9 .. | R, the tensor product of n copies of R, and then let L be the Lie 

algebra of inner derivations of S induced by the 2n elements {a | 1 @..- | 1, 1 | 

a @ . . . | 1 7 4 1 7 4 1 7 4  b | 1 7 4  l @ b | 1 7 4 1 7 4 1 7 4 1 7 4  

It is now easy to see that S ~- Kp~, S L ~- K, and L is a restricted abelian 2n- 

dimensional Lie algebra of nilpotent derivations. However, the smallest degree of 

a polynomial identity satisfied by Kpn is 2p n. | 

In light of Theorem 4.9, it is reasonable to wonder when R is prime of charac- 

teristic 0 and L is a Lie superalgebra, whether Theorem 4.3 can be generalized 

to show that R is commutative. However, in the next example we show that this 

is not the case. 

Example 5.7: A simple ring R of characteristic 0 acted on by a 2-dimensional 

abelian Lie superalgebra L of nilpotent superderivations such that R L is central, 

but R is not commutative. 

Let K be a field of characteristic 0 and let R be the simple ring K2, the 

2 x 2 matrices over K. Let a be the inner automorphism of order 2 of R in- 
/ d  

duced by (10 _ ~  let 61 and 62 be the a-derivations of R defined as  
k / 

61(r) = (0 o 1 ) r _ a ( r ) ( O  O1)and62(r)__= ( 0  1 ) _ a ( r ) ( O  10) 1 1 1 0 r 1 ' 

f~ all r E R" If ( ac bd) E R' then explicit f~ f~ a'61' and62 are 

a ( :  ~) _= (a_c d b)' 61 ( :  : )  = (b-Ca_d a-~)b_ ' and 62(ac b )  = 

(b+c d-a)Sincethematr ices  ( 0  O 1 ) a n d  ( 0  10) a - d  b + c  " 1 1 are negated by 

a, it follows that 61a = -a61 and 62a = - a 6 2 .  Furthermore, it is not hard to 

check that 6162 = -6261 and 612 = 622 = 0. As aresult,  i fL  is spanned by 

the a-derivations 61 and 62 then L is a 2-dimensional abelian Lie superalgebra of 

nilpotent superderivations with L = L1. It is also clear that R L is central even 

though R is not commutative. | 

In Section 4, we mentioned that when a Lie superalgebra L acts on a semiprime 

ring R, the center of R need not be L-stable. We conclude this paper with such 

an example. 
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Example 5.8: A semiprime ring R of arbitrary characteristic acted on by a 1- 

dimensional Lie superalgebra L spanned by a superderivation 6 with 62 = 0 such 

that  the center of R is not L-stable. 

Let S be any semiprime algebra with an element a q~ Z(S )  such that  a 2 E Z(S) .  

Next let R = S if) S; clearly R is also semiprime. Let a and 6 be defined as 

a(x,  y) = (y, x) and 5(x, y) = ( a x - y a ,  x a - a y ) ,  for all (x, y) E R. It  is clear that  a 

is an automorphism of R of order 2 and 6a = - a S .  Furthermore, it can be checked 

that  6 is a a-derivation of R such that  62 = 0. Hence 6 spans a 1-dimensional 

Lie superalgebra L acting on R, where L = L1. Certainly (1, 0) C Z(R),  however 

6(1, O) = (a, a) ~ Z(R) .  Thus the center of R is not L-stable. | 
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